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Abstract—Babel is an open-source language interoperability
framework tailored to the needs of high-performance scientific
computing. Its primary focus is on fast in-process communi-
cation across various languages. In doing so, some additional
call overhead is often inevitable. For several pairs of languages,
however, shortcuts exist that allow for more efficient function
calls. As Babel is a dynamic framework, the particular set of
languages involved is often only known at runtime.

In this work, we present a simple yet very effective opti-
mization that can be used to reduce the call overhead between
various pairs of languages. In particular, our optimization is
applicable if caller and callee are implemented in the same
language. We implement and evaluate these techniques for
C++ and Python. When applicable, our optimization virtually
eliminates the overhead for a small memory cost. Compared to
previous versions of Babel, this means a speedup ranging from
about 5x for simple numerical argument types up to roughly
125x for strings.

I. INTRODUCTION

Supercomputing simulations are critical for global warm-
ing predictions, energy research, and for advancing basic sci-
entific understanding. With supercomputers becoming more
powerful in each generation, more sophisticated and detailed
simulations become feasible. Also, these simulations often
integrate mathematical models from different domains to
achieve better precision, e.g., climate models might be
combined with social models to predict emissions of carbon
dioxide. This trend has led to large and complex systems
that are difficult to maintain. One of the main reasons for
this complexity is legacy code that often cannot be replaced
for technical or economical reasons.

One approach to manage this complexity is component
based software design. This approach can greatly facili-
tate reuse, interoperability, and composability of software.
Consequently, it has become very popular in the design of
business applications and internet technology and there is
large number of widely available frameworks, e. g., COR-
BA/CCM [1], [2], Microsoft’s (D)COM [3] and .Net [4], or
Sun’s JavaBeans [5]. The Common Component Architecture
(CCA) [6] is a joint effort by researchers from both academia
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and U.S. national laboratories to establish and adapt these
techniques for scientific computing. The CCA basically
mediates how components interact with each other and with
the underlying framework.

A major requirement for scientific computing is language
interoperability. This allows the component paradigm to
incorporate legacy software written in mixed languages. Ba-
bel [7] is focused on the special needs of high-performance
scientific computing. As such, it can be used stand-alone or
as part of the full CCA [8] component framework.

In order to address interoperability challenges, Babel
makes use of the scientific interface definition language
(SIDL). SIDL builds on previous work such as CORBA
[1] or COM [9] by tailoring the idea to the needs of
scientific computing. This includes support for dynamic
multi-dimensional arrays, array strides, single and double
precision complex numbers, and structs.

Babel transparently supports both fast in-process function
calls and remote method invocation (RMI) [10]. In the latter
case, caller and callee may reside in a different address
space or on different machines. Babel does not impose
constraints or assumptions on the parallel communication
model used within components, which may be any com-
bination of MPI [11], OpenMP [12], Posix Threads [13],
Global Arrays [14], or similar techniques. However, Babel
allows for composition of parallel components, e. g., the Co-
op project [15], [16] found that an RMI paradigm for MPMD
programming was easily understood and very effective for
application developers [17], [18], [19], [20]. The domains
in which Babel is used are widespread and range from
applications in chemistry, astronomy, and biology to math-
ematical solvers, programming models, and performance
monitoring tools. Established users of the Babel language
interoperability middleware and/or the CCA as a whole
include the hypre preconditioner library [21], the ComPASS
project [22], the CSDMS project [23], the FACETS project
[24], and the MPQC quantum chemistry package [25], [26],
[27].

Based on SIDL interface specifications, Babel assists
the developer by generating language-specific prototypes.
It also generates the necessary glue code for non-native
method invocations. For each of the supported languages,
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Babel tries to make data passed into or returned from
functions appear as “natural” as possible, e. g., a string
appears as a character array in C while it is represented as
a java.lang.String object in the Java bindings. Thus,
each Babel call involves some additional overhead to do the
necessary conversions, implement a common object model
(even on top of procedural languages such as C or Fortran),
and to provide a transparent exception mechanism. For non-
local calls, there is an additional, much larger, overhead
to marshal and un-marshal the data and to do the network
transfer.

Motivation

Until recently, the main focus in Babel development has
been correctness and broadening of its capabilities. In fact,
most applications use a very coarse grained component
model with infrequent Babel calls so that call overhead due
to language interoperability hardly matters, e. g., experiments
for course-grained interface descriptions [28] clearly show
that the overhead of Babel is well within measurement
imprecision — usually below 1%.

However, there are also interesting applications where the
overhead of method invocations can become a significant
factor compared to the computational payload of a function.
One of these examples is TSTT (Terascale Simulation Tools
and Technologies), which aims to establish a community
standard interface for mesh refinement codes. Performance
studies [29] showed considerable overhead compared to a
native interface, which led to the adoption of fast native
interfaces instead of SIDL as their primary technique.

Also, for several users, language interoperability is not
necessarily the main argument for adopting Babel. Instead,
they are sometimes mainly interested in clean interface
specifications, remote method invocation, or the object ori-
ented programming model provided on top of traditional
procedural languages such as Fortran. For these users, even
a moderate overhead is often reason enough (a) not to
adopt Babel at all or (b) design applications with these
performance considerations in mind, often leading to less
intuitive interfaces [26]. Thus, the primary motivation of this
work is to reduce the Babel overhead for these users, thereby
facilitating adoption and impacting a larger audience.

Performance optimizations for fine-grained interfaces are
complicated by the fact that it is in general only known at
runtime (a) if caller and callee reside in the same address
space and (b) which pair of languages is actually involved
in a particular method invocation. This is due to poly-
morphic function calls and Babel’s support for transparent
remote method invocations. In this work, we propose an
in-process optimization that can effectively eliminate the
call overhead for various pairs of languages for a small
memory cost. In particular, this is useful when caller and
callee are implemented in the same language, which is very
common scenario in practice. The main contribution of this
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Fortran

Figure 1. Supported programming languages.

work is a dynamic optimization that avoids unnecessary
conversions and copying whenever possible by generating
efficient dynamic delegates in the auto-generated client-
side glue code. This approach retains all the advantages
of dynamic binding and remote method invocation while
providing roughly the performance of native calls when both
objects end up residing in the same address space and being
implemented in the same language.

We describe Babel’s general approach to language inter-
operability in more detail in Section II. Our extensions and
implementation details for C++ and Python are presented in
Section III. A detailed computational evaluation showing the
effectiveness of our approach can be found in Section IV.

II. BABEL ARCHITECTURE

Babel provides a traditional object-oriented programming
model with single inheritance and multiple implementation
of interfaces. By default, all functions are virtual, i. e., the
function being called always depends on the dynamic type
of the object rather than the static type of the reference.
Babel also provides implicit reference counting and memory
(de)allocation.

Backends are available for a large and growing set of lan-
guages, cf. Figure 1. Restricting Babel to the least common
denominator across all these languages would be a non-
practical approach. Instead, Babel tries to take advantage
of native language features such as builtin data types or
method overloading whenever possible and provides reason-
able alternatives in the remaining cases, e. g., overloading
symbols is supported in most object oriented languages



while unique identifiers are required for Fortran. Across all
supported languages, Babel provides sophisticated features
such as transparent support for remote method invocation,
overloading, inheritance, and exception handling, e. g., it is
common use to derive a Python class from a class written
in Fortran to overwrite a subset of the member functions.

In order to achieve this, Babel employs a C-based inter-
mediate object representation (IOR). The IOR is exactly the
same, no matter which language has been used to implement
or invoke a particular method.

Figure 2 depicts the general scheme of a local Babel
function call. On the client side, a so-called stub is generated
that converts arguments to Babel’s IOR representation, calls
the proper method entry point from the object’s entry
point vector (EPV), and converts eventual return values to
the representation used in the original language. On the
server side (skeleton), the inverse operations are performed,
i.e., arguments are converted from IOR to the particular
implementation language, the user-supplied implementation
is called, and return values are converted back to Babel’s
IOR. In addition, the skeleton is responsible to catch ex-
ceptions thrown in the implementation and convert them
to a language-independent representation. The overhead in-
troduced by this scheme depends on the particular pair of
languages and the type of the arguments. For remote objects,
the only difference is that the EPV will not directly point
to the skeleton but to a babel-generated function (remote
method stub) that marshals and un-marshals the arguments
and performs the necessary network transfer.

III. APPROACH

Babel supports virtual function calls even on top of pro-
cedural languages such as Fortran. Consequently, it cannot
rely on builtin object-oriented language features. Instead, it
implements its own virtual function table and generates the
necessary dispatch code for the various supported languages
in the client stubs. Dynamic dispatch using virtual function
tables was first introduced in Simula [30] and is today
the preferred technique for widely used languages such as
C++ [31].

In Babel jargon, each object or interface carries a ref-
erence to an entry point vector (EPV) that defines the set
of member functions supported by the corresponding type.
Figure 3 shows the memory layout for a Babel object with
a simple inheritance structure. Solid lines denote gener-
alization while dashed lines stand for implementation of
interfaces.

Babel maintains a strict separation between client and
server code to ensure that components can be distributed
in binary form together with the corresponding SIDL file.
In the current design, the method entry points stored in the
EPV are the only way to “cross” the barrier between client
and server code. Skeletons always expect and return data in
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Babel’s IOR and translate arguments to and return values
from the particular implementation language.

This approach has many advantages. However, in terms
of performance, it is often not optimal. For several pairs of
languages, there are “shortcuts” that involve less runtime
overhead than converting to and from Babel’s IOR. The
most obvious and also the most common case are method
invocations where both client and server are implemented in
the same language.

To motivate this with a concrete example, consider a string
being passed using mode in-out from a C++ client to a mem-
ber function of a SIDL component also implemented in C++.
Babel’s C++ bindings use a reference to a std: :string
object, which boils down to a simple address passed on
the stack. In Babel’s IOR, however, the same string is
represented as a char=x pointer, as implementations are
allowed to return a string different from the one being
passed. The stub calls strdup to allocate memory and
clone the string wrapped by the std::string object.
After the call is finished, the result string is assigned to
the std::string object (which may involve memory
reallocation) and the temporary allocated memory has to be
released. On the server side, the skeleton has to wrap the
raw character pointer using a fresh std: :string object
created on the stack, pass it to the actual implementation by
reference, and copy the raw data back to the input string.
Depending on the length of the string returned, this last
step may involve dynamic memory reallocation as well.
In practice, the whole procedure is roughly two orders of
magnitude slower than a native call by reference.

We propose a solution that requires modification to Babel
in two areas. The first is a language-independent general-
ization of Babel’s IOR. The second are language-dependent
extensions of the various backends, of which Python and
C++ have been implemented so far. The latter is the more
interesting example and is discussed in more detail in the
following sections.

Generalized Dispatch Tables

Support for dynamic dispatch in Babel implies that we
cannot statically deduce the actual implementation language
used for a particular method invocation in general. Instead,
it depends on the dynamic type of an object, e. g., invoking
method b () on an object reference of type B in the example
introduced in Fig. 3 might be either a Python or a C++
call, depending on whether the actual object is of type B
or C. Also, the amount and type of information we need to
provide in order to implement efficient in-process method
invocations strongly depends on the particular implementa-
tion language.

Our solution is an extension to Babel’s EPV data structure
that allows language backends to expose alternative method
entry points with a calling convention different from Babel’s
IOR. For each method, the EPV is augmented by two
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convert arguments
native =>IOR

Skeleton (Server)

convert arguments
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call native implementation
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Figure 2. Babel method invocation. Arguments and return values are converted to Babel’s intermediate object representation (IOR) before being passed.

additional fields, i. e., an enumeration type and an opaque
pointer. Method stubs evaluate the enum in order to deter-
mine the meaning of the opaque pointer, which might be
anything from regular function pointers to language-specific
handles or secondary data structures. This approach allows
language backends to expose the information necessary to
implement more efficient method invocations. However, a
Babel backend is considered complete even if it does not
implement these extensions.

Two modifications are necessary for language bindings
to make use of these features. On the server side, Babel
calls a generated function set_epv for each component to
initialize the static EPV and, optionally, the additional fields
introduced above. On the client side, additional dispatch
code has to be generated that takes advantage of these
language specific “shortcuts” if present.

Since EPVs are static information, both the additional
memory and runtime overhead for initialization of dynamic
dispatch tables is negligible in practice. However, for most
language pairs, there is a small runtime overhead necessary
to implement the dynamic dispatch.

C++ Bindings

Babel’s C++ bindings closely model the method signa-
tures and inheritance structure defined in the SIDL file.
There is a one-to-one correspondence between basic SIDL
types and their C++ equivalents. Whenever feasible, SIDL
types are mapped to their native C++ or STL equivalents.
For more complicated types such as arrays, Babel provides
a runtime library with corresponding C++ interfaces. The
semantics of the client side bindings are similar to C++ smart
pointers, i. e., reference counting is handled implicitly. In-
terfaces are implemented using abstract base classes. Native

332

exception mechanisms are used to handle SIDL exceptions.

The set of classes generated by Babel for the class
hierarchy introduced in Figure 3 is show in Figure 4. Both
BaseInterface and BaseClass are part of Babel’s
runtime library. The user implements only the classes to
the right of the dashed line. The remaining classes are glue
code generated by Babel and basically wrap the IOR for the
corresponding SIDL class.

Babel generates a static _create () member function
that is used to create and initialize new SIDL objects.
Initialization is performed recursively for base classes and
records a pointer to a newly created implementation object
in the data field of the IOR. The generated skeleton casts
this field back to the appropriate type and invokes the user-
defined implementation after converting in-arguments. Note,
that the generated member functions for client stubs are non-
virtual and can thus be bound at compile time as Babel
implements virtual call semantics in a language-independent
way.

Except for so-called cv-qualifiers (const, volatile), type
signatures of Babel-generated method stubs and of user-
supplied implementations are equivalent. Thus, in the case of
C++ calling C++, we ideally “replace” the generated method
stub with the actual implementation to avoid the usual
overhead. In software engineering literature, this technique
is usually referred to as delegation. The key to implement
this efficiently are member function pointers — one of the
darker corners of C++. We will thus continue with a little
excursion to recap the idiosyncrasies of this language feature
before explaining how we can employ it for zero-overhead
native function calls in Babel.

C++ Method Function Pointers: Unlike regular function
pointers, method function pointers in C++ are a relatively
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Figure 3. Babel object layout for a simple inheritance structure.

complex feature. As their name suggests, they are designed
to hold the address of a C++ member function. The standard
is very restrictive in what you can do with them: they can be
set to NULL, compared for equality and inequality (as long as
both operands are of the same type), and compared against
zero. According to the C++ standard' [32], they can also
be cast using reinterpret_cast to a member function
pointer of an unrelated class. Unfortunately, this (a) does not
work for several compilers in practice and (b) is not really
useful as everything you can legally do with it is to cast it
back to the original type.

To understand why, recall that for virtual functions, the
actual function being called depends on the supplied this
pointer. There is a vast diversity in how compilers implement
this behavior. Some (more exotic) compilers emit a small
piece of code (thunk) that performs necessary lookups and
pointer adjustments before invoking the actual implementa-
tion. This technique is simple, but involves some runtime
overhead due to the additional indirection. A more common
technique employed in almost all major compilers is to add
additional fields that specify the this pointer offset and, in
the case of virtual methods, the index in the virtual function
table. Thus, depending on the target machine architecture
and the compiler being used, the size of member function
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pointers can be anywhere between four and 20 bytes. The
size of member function pointers also depends on the
particular inheritance structure as compilers apply different
optimizations for single, multiple, and virtual inheritance
in practice. Thus, casting a member function pointer to a
different type can change its size and may lead to bizarre
side effects.

Fast Delegates for C++ Client Bindings: Client bind-
ings generated by Babel are strictly separated from the actual
implementation and do not depend on whatever language
has been used to implement a particular class. This also
means that the user-defined type of the implementation class
is not known to the compiler. In order to implement efficient
function calls, we need a way to (a) communicate the proper
this pointer and the method entry point between client and
server and (b) reliably invoke the actual implementation.

Surprisingly, the last part is easy to achieve. The reason is
that member function pointers can be declared and invoked
on incomplete types, e. g., the following code sequence is
legal C++:

class A;
void invoke (A xobj, void (A::xptr)()) {
(obj—>*ptr)();

The compiler has to be able to generate correct code know-
ing nothing about class A. The anonymous class basically
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Figure 3.

Generated C++ bindings for the class hierarchy introduced in

forces the compiler to disable all the optimizations it might
do for a known inheritance structure. This leads to the
bizarre situation that casting of member function pointers
is standard-compliant but non-portable, their invocation on
the other hand, once the cast succeeds, is non-standard but
portable in practice. An elegant way to handle compilers not
supporting unrelated casts is by employing partial template
specialization based on the actual size of member function
pointers. Interested readers are referred elsewhere [33] for
an excellent in-depth discussion.

The one ingredient missing is the proper this pointer.
For classes implemented in C++, Babel maintains such a
reference in the data pointer shown in the object layout in
Figure 3. Note, that there is one such pointer per class in the
inheritance hierarchy and it depends on the dynamic type of
the actual object which one to use. This information cannot
be inferred by the generated client stub in general.

Our solution is to pass the offset relative to the beginning
of the IOR along with the method function pointer on
to the client. The opaque EPV pointer points to a struct
that contains both the member function pointer and the
proper offset to calculate the this pointer. For interfaces,
the correct this pointer can be obtained by adding the
offset to the object pointer indicating the beginning of
the actual object; see Fig. 3 for reference. In the case of
static functions, we can avoid this indirection and store the
native function pointer directly in the generalized EPV.

On the client side, a small thunk is generated instead
of the default stub code that dynamically chooses between
the native version (if applicable) and the generic fallback
code. The dispatch code dynamically checks if an object
supports fast native calls by exposing the necessary method
entry points. It then computes the this pointer, fetches the
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method function pointer, and directly invokes the user-code.
Otherwise, control is handed over to the generic Babel stub.

For native function calls, this is always a win; see Sec-
tion IV for computational results. Also, there is almost no
associated memory cost apart from the slightly bigger EPVs
and a few additional bytes in code size needed for the
dispatch thunk. It does, however, add a few extra cycles
to the costs of a function call if the check fails, i. e., a non-
native implementation is called.

We can do considerably better by spending a few extra
bytes per method in order to cache the outcome of the
dispatch process. The result is a pair consisting of a this
pointer and a method function pointer, either pointing to
the generic Babel stub or the native user code. The thunk
generated for each method then basically looks like the
following code sequence.

inline void foo(a_1, a_2,
(this_foo —>xmfp_foo)(a_l,
}

A reasonably optimizing compiler will inline this code
sequence, which brings the cost of a native Babel call down
to the cost of a regular member function pointer invocation
once the pointer is cached. For compilers without support for
link-time optimization, it is essential to generate the method
dispatch in the header file for the obvious reasons.

We implement both eager and lazy caching. In the first
case, we bear the costs at object creation time in favor of
faster method invocation. In the latter case, the member
function pointer and the this pointer are computed at
the first invocation, requiring an additional runtime check.
However, this check is fully predictable and turned out to
be very cheap on modern architectures as they execute code
speculatively based on sophisticated branch prediction units.

For some compilers such as gcc we can still do slightly
better. As discussed before, invoking a member function
pointer can be quite costly as it may involve this
pointer adjustments and lookups in the virtual dispatch table
(vtable). For recent versions of gcc, things get even worse
as the compiler applies a tricky optimization to decrease
the size of member function pointers at the expense of a
small runtime overhead: the vtable index and the method
entry point share the same field in its internal data structure.
Addresses are always aligned and thus even. For a vtable
index ¢, the value 27 + 1 is stored, which is always odd
and allows the compiler to distinguish among the two cases.
The necessary dynamic check adds a few extra cycles to the
costs of a method function pointer invocation.

Fortunately, gcc implements a nifty C++ language ex-
tension to make up for this. It allows developers to extract
the actual function pointer that would be called for a given
pair of object and method function pointer, e. g., we can
cast a method function pointer of type void (A:#)(int) to a
regular function pointer of type void (x)(Ax, int) by supplying
a concrete this pointer. By employing this feature, the

a_n) {

,
a_2, ... , a_n);



space overhead for caching can be reduced to two machine
words per member function (the this pointer and a more
efficient regular function pointer) and the costs for native
method invocations is reduced to the costs of an indirect
function call — as low as we can get for polymorphic
function calls.

There are two rather subtle differences in the program-
ming model compared to regular Babel calls. First, the
generic skeleton generated by Babel catches language spe-
cific C++ exceptions and converts them to generic SIDL
exceptions before passing them on to the user. By applying
our optimization, this conversion does not happen and the
user will observe the unmodified C++ exception. This may
change the behavior of existing code but is easy to handle in
practice. The second difference is related to out arguments.
In the traditional setting, Babel consistently initializes those
arguments even if they are never defined in the user-supplied
code. Again, this initialization does not happen in the
optimized case. Code relying on this behavior has been
always undefined but works reliably using older versions
of Babel or when the optimization is disabled.

Python Bindings

As for C++, namespaces and object hierarchies defined
in SIDL map nicely to native Python packages and mod-
ules. Babel uses Python C extension modules that wrap
the internal object representation and implement argument
marshaling and method dispatch.

As Python is a dynamic language, most of the difficulties
of invoking member functions of incomplete types discussed
before do not apply. Instead, Python provides bound mem-
ber functions that “remember” their context. Depending
on whether or not a method is ultimately implemented
in Python, a callable bound to the actual implementation
object or the regular stub is returned upon attribute look-
up. As for C++, a reference to an object of the user-
supplied implementation class is maintained in the data
pointer, cf. Figure 3. Its computation involves the same steps
as discussed before in the context of C++.

Depending on whether or not a method is declared
static, we apply a different method to implement the
attribute lookup.

« Static methods are resolved at module initialization

time and override the default client stub in the module
dictionary.
For non-static member functions, we override Python’s
default implementation for tp_getattro that is
called to lookup object attributes dynamically. For na-
tive member functions, this procedure returns a callable
bound to the actual implementation. Otherwise, we
defer the lookup to PyObject_GenericGetAttr.
This process is less efficient but does not require
the maintenance of a dictionary per object. However,
different trade-offs are possible.
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IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we present a performance evaluation of
the optimization presented in this paper. The results are very
encouraging, showing call overheads practically on par with
native virtual function calls in C++ for a very moderate
memory overhead while retaining all the flexibility of regular
Babel objects.

Measuring fine-grained call overheads can be a challeng-
ing problem. We thus subsequently discuss the performance
measurement techniques employed to minimize external
interference factors before presenting detailed experimental
results for various data types on a recent Linux kernel using
the two major compilers used in the scientific community:
Intel’s icc and the GNU compiler gcc.

A. Methodology

Estimating performance on modern x86 micro-
architectures has become an almost impossible task.
The reasons are manifold: hyper-threading, programmable
decoding units, branch prediction, out-of-order execution
and aggressive speculation are only some of the causes.
Additional noise is generated by cache coherence protocols,
deep memory hierarchies, shared systems resources such as
buses, and operating system overhead.

The costs for Python method invocations have been
measured using the builtin timeit module with 10.000
iterations and a repeat count of three. We measure the
duration of a method invocation for an empty function using
various argument types. The Babel version is a modified pre-
release for 1.5.

Reliable results for C++ are much harder to obtain. We
use CPU cycle counters (rdtsc) to obtain cycle-accurate
timings. Calls are executed repeatedly (10% times). We report
the average call costs using statically linked binaries. The
duration of an equivalent empty loop is used to account
for the loop overhead. An empty volatile-qualified inline
assembler block was used to prevent the compiler from
optimizing the loop away. As we execute calls repeatedly, we
deliberately measure best-case performance as caches and
branch target buffers will perform near-optimal. In practice,
calls may involve a higher overhead.

Operating system overhead can lead to considerable noise
(>+10%). We thus ran our C++ benchmarks directly in the
context of the kernel and disabled software interrupts before
beginning the measurements (c11). A serializing instruction
(cpuid) is issued to force completion of in-flight instruc-
tions executed out of order. Furthermore, we disabled power
management, symmetric multi-processor support (SMP), and
hyper-threading. Thus, apart from non-maskable interrupts,
we can be certain that no other code is interfering with
our profiling runs. We use a 32 bit stock Linux 2.6.32
kernel with a corresponding Kernel Mode Linux?> (KML)

Zhttp://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml



Caching

Argument Type Native | Babel 1.4 none | eager | Tazy
Array 6.8 86.7 33.0 6.0 7.0
Struct 21.0 40.0 40.9 20.5 | 20.1
String 7.4 874.2 32.9 6.2 7.0
Complex 8.0 69.7 34.6 6.0 7.0
Int 6.4 38.3 31.2 5.5 7.5
None 6.0 37.2 30.5 5.4 5.6
Table I

AVERAGE CALL OVERHEAD IN MACHINE CYCLES FOR C++ COMPARING
THE COSTS FOR NATIVE METHOD INVOCATIONS AND CALLS THROUGH
THE BABEL MIDDLEWARE USING GCC.

patch to execute regular processes in ring zero. Results are
shown both for gcc version 4.3.2 and the Intel compiler
in version 11.1. Benchmarks were executed on a 2.4 GHz
Intel Core™ 2 Duo system with 2GB of DDR2 memory.
Results can vary significantly for different compiler flags. To
make for a fair comparison, we used the highest particular
optimization level (-03) and enabled machine-specific code
generation (—-mtune=native).

For most simple data types, our results are very precise
showing almost no variability. However, more complicated
types such as strings or arrays involve temporary memory
allocation and copying. For these benchmarks, some vari-
ability caused by the memory subsystem is unavoidable. We
thus repeat measurements 100 times, always disregarding the
first run. For all data points, the sample standard deviation
is smaller than 10%. Simple cases such as integer arguments
show almost no deviation.

B. Computational Results

Table I shows experimental results for C++ calls with vari-
ous argument types in machine cycles. For space limitations,
we only present interesting data types. Other basic data types
such as floating point numbers, chars, or enums roughly
show the same behavior as integer values. Arguments are
passed by value (mode in in Babel jargon). The first
data column shows the costs of native C++ virtual method
invocations. Column “Babel 1.4” shows results for Babel
without the optimizations proposed in this paper, everything
else being equal. Data for the various caching strategies
discussed in Section III can be found in the last three
columns (“Caching).

Data shown in Table I has been gathered using gcc,
which provides a C++ language extension that allows for
more efficient method pointer invocations. For eager and
lazy caching, the Intel compiler produces only slightly worse
results but requires more memory, cf. Table II. However,
icc produces slightly more efficient code without caching,
e. g., an integer method invocation costs about 25 instead of
30.5 cycles.

It is interesting to see how our results compare to those
published about eight years ago for Babel 0.7 [6] using older
hardware (500MHz Pentium™ III) and compiler technology.
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no eager lazy
caching | caching caching
memory (static) 12 12 12
memory (per obj.) 0 12/8 12/8
caching none object first
creation | invocation

Table II

OVERVIEW OF VARIOUS CACHING STRATEGIES. MEMORY OVERHEAD IS
REPORTED IN BYTES PER METHOD FOR IcC AND GCC RESPECTIVELY
(32 BIT LINUX).

In terms of machine cycles, we observe an astonishing im-
provement both for C and C++ by a factor of about 2.9 and
2.7 respectively. This is also true for simple data types where
the potential for compiler optimizations is quite limited.
Thus, a large fraction of this is probably due to advances in
processor technology, e. g., branch prediction and superscalar
micro-architectures. The speedup in hardware is even more
impressive as clock rates are up by roughly another factor
of five on modern machines.

In the case of C, the Babel overhead compared to the
costs of a native function call is moderate. This is not
surprising as Babel’s intermediate representation (IOR) is
written in C and hardly requires additional transformation.
Two noteworthy exceptions are raw arrays (rarrays) and
arrays with order specifications. In the first case, raw data
pointers can be used instead of SIDL arrays to resemble
existing interfaces. However, in the current implementation,
Babel internally wraps them in its usual data structure by
obtaining the necessary meta-data from their declaration.
Thus, contrary to intuition, raw arrays are among the more
expensive argument types in Babel. The second case are
arrays with column or row order specifications (ordered
array). Babel does whatever necessary to comply with
these specifications, which might result in a deep copy of the
actual data. Note, that these cases do not benefit from any
of the optimizations presented in this paper. In many cases,
the potential improvement would be rather small compared
to the costs for copying the array. Thus, our current imple-
mentation disregards these cases and unconditionally falls
back to the default client stubs. The user should be aware
of the potential costs when using these features.

Considering C++, the costs for language interoperability
are more significant. Even for simple data types, the costs
compared to a native call increase by a factor of about
5x. For arguments requiring additional conversion, this only
gets worse, e.g., passing an interface is about 45 times
slower than the native equivalent; for strings, the overhead
is — depending on its length — more than two orders of
magnitude.

Our system leaves the trade-off for the various caching
strategies to the user’s discretion; see Table II for an
overview. Depending on the characteristics of the applica-
tions, any of those techniques may be preferable. The user
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Figure 5. Speedup for Python method invocations compared to previous
versions of Babel.

can select among them by setting pre-processor flags at
compile time.

The static memory overhead per method is relatively small
and usually of no concern to the user. The dynamic memory
overhead per object and method for the implementation of
fast delegates may be more of an issue for very lightweight
objects. The user may choose to spend no memory at all
(“no caching”). Even in this case, applying our techniques
is always a clear win compared to the costs of a generic
Babel call if both caller and callee are implemented in C++.

If the user is willing to spend some memory, we can do
considerably better. There is almost no regression for non-
native calls and native Babel calls cost about the same as
native virtual C++ method invocations. For gcc, we can
take advantage of a non-standard C++ extension and reduce
the costs to that of a simple function pointer invocation.
Otherwise, we have to pay the costs for a less efficient
member function pointer invocation. The memory overhead
is two machine words per method in the first case, and the
costs of a regular pointer plus a member function pointer
otherwise. In the case of eager caching, we pay the costs for
the initialization of these fields at object creation time. For
lazy caching, we do the same at the first invocation, requiring
an additional dynamic branch. However, the differences are
rather small as modern architectures successfully hide these
costs in their branch prediction units.

In both cases, the speedup compared to regular native
Babel calls ranges from about 5x for simple data types
up to roughly 125x for strings. Thus, by spending a small
amount of memory, we can effectively eliminate the runtime
overhead for language interoperability completely for native
method invocations without loosing flexibility.

Similar speedups could be achieved for Python; see
Figure 5. However, while static and non-static methods
behave similar in C++, there is a rather large difference
for our Python implementation. The reason is that we do
the dynamic lookup at every invocation for regular Python
objects while we do it only once at object creation type
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for static methods. The same technique can also be applied
to non-static methods, but would involve allocation and
initialization of a local dictionary per object (as for regular
Python objects).

V. OUTLOOK AND FUTURE WORK

The concepts proposed in this article nicely translate to
other pairs of languages, but require some language-specific
effort. C++ and Python where the most tempting targets to
start with, but we plan to add support for further language
pairs in the near future. In general, our approach is effective
for most languages supporting some kind of dynamic dis-
patch, including newer revisions of Fortran (2003 or later).

Apart from these fine grained optimizations, we are pur-
suing ideas that require more fundamental changes to Babel
by allowing for a more flexible representation of the IOR.
These changes would allow to optimize the generated glue
code for the particular subset of languages actually involved
in an application.
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